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LETTER TO THE EDITOR 

Lattice models of branched polymers: uniform combs in two 
dimensions 

D S Gauntt, J E G LipsonS, S G Whittington§ and M K Wilkinsont 
t Department of Physics, King’s College, Strand, London, WC2R 2LS, UK 
$ Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA 
0 Department of Chemistry, University of Toronto, Toronto, M5S 1A1, Canada 

Received 21 May 1986 

Abstract. We establish rigorously the relationship between the growth constant of uniform 
trees with two branch points and that of self-avoiding walks. For combs, we estimate the 
corresponding exponent and study the mean-square lengths of the internal and external 
branches. 

Recently there has been considerable interest in uniform star polymers. These are 
structures having f branches with equal numbers ( n )  of bonds meeting at a common 
vertex and having a total of N = nf+ 1 monomers. Simulation studies (Lipson et a1 
1985, Wilkinson et a1 1986, Whittington et a1 1986) have been very useful in testing 
the predictions of scaling (Daoud and Cotton 1982) and renormalisation group ( RG) 

treatments (Miyake and Freed 1983) of these systems, but have raised questions about 
the accuracy of the RG treatment for high values off:  The simulation results (Mazur 
and McCrackin 1977, Zimm 1984a, b, Freire et a1 1986, Whittington et a1 1986) are in 
close agreement with experimental measurements (Huber et a1 1984) of g ( f ) ,  the ratio 
of the mean-square radius of gyration of an f star to that of a linear polymer with the 
same number of monomers. They confirm that g ( f )  is relatively insensitive to the 
effects of excluded volume. However, excluded volume effects are clearly important 
in determining the detailed structure of the polymer as well as the critical exponents. 

The effects of excluded volume on the properties of uniform branched polymers 
with more than one branch point have received little attention (Berry and Orofino 
1964, Roovers and Toporowski 1981, Douglas and Freed 1984) and we report here 
the first simulation study of such systems. In this letter, we focus on uniform combs 
with two vertices of degree three ( H  combs) in two dimensions. We prove rigorously 
that the growth constant of such structures is equal to p’, where p is the growth 
constant of self-avoiding walks, and present exact enumeration and Monte Carlo results 
for the number of H combs and for the mean-square end-to-end lengths of the internal 
and external branches. The internal branch is that which joins the two branch points; 
in the absence of excluded volume effects there would be no difference in the dimensions 
of the two kinds of branches. 

First we derive some rigorous results on the growth constant of H combs and some 
related structures, namely brushes with two branch points, one of which is of degree 
d,  and the other of degree d2, i.e. a (d, - 2, d2 - 2) brush. We shall consider a hypercubic 
lattice in d dimensions, so that the lattice coordination number is 2d, and write the 
coordinates of a lattice point as (x,, x2,. . . , x d )  where the xk are integers. Suppose 
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that the number of (weak) embeddings per lattice site of such a brush with n edges 
in each branch is b,( d ,  - 2 ,  d ,  - 2 ) .  We shall show that 

lim n - l  log b,(dl - 2, d,  - 2) = ( d ,  + d2 - 1) log p (1) 
n- rm 

where p is the growth constant for self-avoiding walks. 
To derive an upper bound on b, we consider each uniform star with d ,  branches 

and n edges in each branch. Translate the star so that its vertex of degree d ,  is at the 
origin. Now for each branch in turn, translate each star in turn with (d2  - 1) branches 
so that the end point of the chosen branch of the d ,  star coincides with the branch 
point (of degree d 2 -  1) of the ( d 2 -  1) star. The set of graphs obtained by this 
construction includes all ( d ,  - 2 ,  4 - 2 )  brushes so that 

bfI(d1- 2, d2 - 2 )  s dlsn(dl)sn(d, - 1) 

lim sup n-I log b,(dl - 2 ,  d2 - 2 )  d d ,  log p + ( d ,  - 1) log p 

where s , ( f )  is the number of weak embeddings of an f star. Hence 

( 2 )  

where we have used the fact that the growth constant of uniformfstars is pf (Wilkinson 
et a1 1986). 

Let the number of self-avoiding walks with n edges be c,. Consider the subset 
( C ' ( n ) )  of these walks in which the two vertices of unit degree have respectively the 
minimum and maximum x d  coordinates of all vertices in the walk. Let the number of 
n-edge walks in this subset be c i .  It has been shown by Hammersely and Welsh (1962) 
that 

n-m 

In turn, translate each member of C*( n )  so that the vertex of unit degree with minimum 
x d  coordinate is at the origin. Suppose that the other unit degree vertex is then at 
(xy ,  x:, . . . , x",. We now construct 2d - 1 wedges as follows: 

w 2 k - 1 :  { ( X I ,  x 2 , .  . . , x d ) l x k  0, x k  < X I  0 V I  # k} 

w 2 k :  { ( X I  9 x2,. . , x J ) l x k  2 0, - x k  < X I  s o  V I  # k} 

where k runs from 1 to ( d  - 1). In addition 

w 2 d - 1 :  { ( X I  3 x2 . . x d  ) Ixd 0, 1x11 Ixd I d ) *  

These 2d - 1 wedges all contain the origin but are otherwise disjoint. In addition, 
none of them contains any point with positive x d  coordinate. 

We now construct a set ( S )  of stars with d ,  branches by concatenating dl -1  
self-avoiding walks of n edges each confined to a wedge W , ,  W,, . . . , W d , - l  and a 
walk from C * ( n ) .  These graphs are stars (since none of the arms can overlap) and 
these stars can be constructed in 

d,-1 

c i  n cfl(WI0 
k = l  

ways, where c,( W )  is the number of self-avoiding n-step walks confined to the wedge 
W .  Only vertices in the walk from C*(n)  have positive x d  coordinate and a single 
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vertex (of degree 1)  has maximum x d  coordinate. This vertex has coordinates 
(xy ,  x:, . . . , x:) .  We now construct wedges V I ,  V2 ,  . . . , v 2 d - 1  which 

(i) all contain ( x y ,  x:, . . . , x",, 
(ii) are otherwise mutually disjoint and 
(iii) have x d  3 x d  

0 

in a similar way to the construction of W ,  , W2,  . . . . We concatenate each member of 
S with self-avoiding walks in each of the wedges V I ,  V2 ,  . . . , v d 2 - 1  to form brushes 
with functionalities d ,  and d2.  This can be done in 

d . - I  d.-1 

ways and this quantity is a lower bound to b, (d, -2, d2- 2). Hence 

lim inf n-I log b,(dl -2, d2-2) b [ ( d ,  - l )+ (d2-  1 ) +  11 log p (3) 
n-m 

where we have made use of a result of Hammersley and Whittington (1985) that 
self-avoiding walks in diverging wedges have growth constant p. Equation ( 1 )  then 
follows from (2) and (3). 

The proof of the upper bound using concatenation of two stars has the advantage 
that it yields the exponent inequality 

( d1- 2, d2 - 2) G y (  d , )  + y (  d2 - 1 )  - 1. 

Although this is weak for small d,  , d2 it may prove useful for larger functionalities. 

n edges in each branch: 
We assume the usual asymptotic form for the number, c n ( H ) ,  of H combs having 

c , (H) -  n y ( H ) - ' A ( H ) "  

where h ( H )  = p5. The exact values of c,(H) for small n are given in table 1 for the 
honeycomb, square and triangular lattices. Some of these data, together with some 
preliminary Monte Carlo data obtained by an inversely restricted sampling technique 
(Rosenbluth and Rosenbluth 1955), are presented in figure 1 where we plot 
ln[c,(H)/h"]/ln N against l / ln  N, where N = 5n + 1.  This is asymptotically linear, 
as expected, and has an intercept equal to y ( H )  - 1. 

Our overall estimate 

y(  H) = 0.79 f 0.02 

is in excellent agreement with the recent result y = $ = 0.781 25 due to Duplantier 
(1986). This is significantly lower than our corresponding estimate y ( 3 )  = 1.07 (Wilk- 
inson er a1 1986) for 3-stars and, afortion', than for self-avoiding walks. Thus increasing 

Table 1. Exact enumeration data for H combs in two dimensions. 

n Honeycomb Square Triangular 

1 I f  18 207 
2 36 1 924 195 762 
3 822 202 544 222 954 153 
4 14 910 26 925 290 
5 279 603 
6 1021 416 
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Figure 1. Exact enumeration and Monte Carlo estimates of y ( H )  for the square (0) and 
triangular ( A )  lattices. The largest error bars are about equal to the size of the symbols. 

the number of vertices of degree three decreases the value of the exponent y, reflecting 
the increasing interference between the branches. A 5-star has the same number of 
branches as an H comb and has a lower value of y ( 5 )  -- -0.29 (Wilkinson er a1 1986), 
reflecting the increased interference around the higher functionality branch point. 

Another property which is expected to reflect the effects of excluded volume is the 
mean-square length of a branch of the comb. All of the external branches are equivalent 
and are expected to be less expanded than the internal branch. The asymptotic 
behaviour should be 

(RZ,(H)>, - &n2” 
where x can be i or e, denoting the internal or external branch. Our data are consistent 
with the exponent Y being identical in the two cases and equal to the self-avoiding 
walk value, Y = $ (Nienhuis 1982). In table 2 we give the exact values of ( R i ( H ) ) i  and 
( R ; ( H ) ) ,  for the square and honeycomb lattices for small n. The relative expansion 

Table2. Exact values of ( R i ( H ) ) i ,  ( R : ( H ) ) ,  and their ratio for the square and honeycomb 
lattices. 

n 

1 1 1 1 1 1 
3.151 77 2.783 78 1.132 19 3 3 1 
5.940 91 5.256 54 1.130 19 6.463 51 5.62044 1.15000 
9.489 40 7.848 19 1.209 12 10.15431 9.027 66 1.124 80 

14.875 79 13.121 76 1.133 67 
20.044 30 16.592 25 1.208 05 
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of the internal branch is clearly reflected and the sequences of ratios 
( R ; (  H ) ) J ( R ; (  H ) ) = ,  although difficult to extrapolate, appear to be converging to a 
common limit. In fact, we expect this amplitude ratio to be a universal quantity. Our 
estimate for the value of this ratio is obtained from Monte Carlo data for the square 
lattice. In figure 2 we plot (R2, (H)) , /n1 . ’  against l / n  for x = i  and e. We estimate 
that the values of the amplitudes are 

Bi= 1.31 i0.02 

and 

Be = 0.96 * 0.01. 

This latter value is identical, within the error bars, to the value for 3-stars, B(3)= 
0.966i0.001 (Whittington et a1 1986). The amplitude ratio is Bi/B,= 1.36i0.04, 
considerably greater than unity. 

~ 0 0 0  0 0 0 
0 

rr 
0 0 

0.9 I I 1 I I I I 1  
0 0.08 0.16 0.24 

1 I n  

Figure 2. Monte Carlo estimates of the mean-square length of the internal (0) and an 
external (0) branch of an H comb on the square lattice scaled by n1.5 plotted against l / n  
where n is the branch length. 

In summary, we have rigorously established the relationship between the growth 
constant of H combs and that of self-avoiding walks; we have given the first numerical 
estimate of the exponent y (  H )  in two dimensions and have discussed how the arrange- 
ment of branches in a uniform branched polymer affects the corresponding exponent; 
we have shown that the internal branch is expanded relative to the external branch of 
a comb, that the amplitude characterising the growth of the dimension of the external 
branch is similar to that of a 3-star and we have estimated the ratio of the amplitudes 
for internal and external branches. We conjecture that this amplitude ratio is a universal 
quantity depending only on dimension and that the amplitude for the external branch 
is identical to that for a branch of a 3-star. 

This research was financially supported, in part, by NSERC of Canada, by Nato (grant 
number RG85/0067) and by the SERC. 



L816 Letter to the Editor 

References 

Berry G C and Orofino T A 1964 1. Chem. Phys. 40 1614 
Daoud M and Cotton J P 1982 J. Physique 43 531 
Douglas J F and Freed K F 1984 Macromol. 17 2344 
Duplantier B 1986 Phys. Reo. Lett. submitted 
Freire J J, Pla J, Re7 A and Prats R 1986 Macromol. 19 452 
Hammersley J M and Welsh D J A 1962 Q. J. Math. 13 108 
Hammersley J M and Whittington S G 1985 J. Phys. A: Math. Gen.  18 101 
Huber K, Burchard W and Fetters L J 1984 Macromol. 17 541 
Lipson J E G, Whittington S G, Wilkinson M K, Martin J L and Gaunt D S 1985 J. Phys. A: Math. Gen.  

Mazur J and McCrackin F 1977 Macromol. 10 326 
Miyake A and Freed K F 1983 Macromol. 16 1228 
Nienhuis B 1982 Phys. Reo. Left. 49 1062 
Roovers J and Toporowski P M 1981 Macromol. 14 1174 
Rosenbluth M N and Rosenbluth A W 1955 1. Chem. Phys. 23 356 
Whittington S G, Lipson J E G, Wilkinson M K and Gaunt D S 1986 Macromol. 19 1241 
Wilkinson M K, Gaunt D S, Lipson J E G and Whittington S G 1986 J. Phys. A: Math. Gen.  19 789 
Zimm B H 1984a Macromol. 17 795 
- 1984b Macromol. 17 2441 

18 L469 


